4.6 Article

Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings

Journal

GLOBAL AND PLANETARY CHANGE
Volume 68, Issue 3, Pages 164-174

Publisher

ELSEVIER
DOI: 10.1016/j.gloplacha.2009.03.017

Keywords

elevation dependency; Tibetan Plateau; minimum surface air temperature; climate change; global warming

Funding

  1. China Special Fund for Nonprofit Organizations [GYHY200706029]
  2. Natural Science Foundation of China [40825008]
  3. National Basic Research Program of China [2004CB720208]
  4. University of San Diego [FRG 08-09]

Ask authors/readers for more resources

Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961-2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' x 10' resolution during three 20-year mean periods (1980-1999, 2030-2049 and 2080-2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available