4.6 Article

Modulation of Rho-Rock signaling pathway protects oligodendrocytes against cytokine toxicity via PPAR--dependent mechanism

Journal

GLIA
Volume 61, Issue 9, Pages 1500-1517

Publisher

WILEY
DOI: 10.1002/glia.22537

Keywords

lovastatin; EAE; MS; oligodendrocyte progenitors; PPAR-; RhoA-ROCK; survival; differentiation

Categories

Funding

  1. National Institutes of Health [NS-22576, NS-37766, C06 RR018823]
  2. Department of Veterans Affairs [VA-1BX001072, VA-BX001999]

Ask authors/readers for more resources

We earlier documented that lovastatin (LOV)-mediated inhibition of small Rho GTPases activity protects vulnerable oligodendrocytes (OLs) in mixed glial cell cultures stimulated with Th1 cytokines and in a murine model of multiple sclerosis (MS). However, the precise mechanism of OL protection remains unclear. We here employed genetic and biochemical approaches to elucidate the underlying mechanism that protects LOV treated OLs from Th1 (tumor necrosis factor-alpha) and Th17 (interleukin-17) cytokines toxicity in in vitro. Cytokines enhanced the reactive oxygen species (ROS) generation and mitochondrial membrane depolarization with corresponding lowering of glutathione (reduced) level in OLs and that were reverted by LOV. In addition, the expression of ROS detoxifying enzymes (catalase and superoxide-dismutase 2) and the transactivation of peroxisome proliferators-activated receptor (PPAR)-alpha/-beta/-gamma including PPAR-gamma coactivator-1 alpha were enhanced by LOV in similarly treated OLs. Interestingly, LOV-mediated inhibition of small Rho GTPases, i.e., RhoA and cdc42, and Rho-associated kinase (ROCK) activity enhanced the levels of PPAR ligands in OLs via extracellular signal regulated kinase (1/2)/p38 mitogen-activated protein kinase/cytoplasmic phospholipase 2/cyclooxygenase-2 signaling cascade activation. Small hairpin RNA transfection-based studies established that LOV mainly enhances PPAR-alpha and less so of PPAR-beta and PPAR-gamma transactivation that enhances ROS detoxifying defense in OLs. In support of this, the observed LOV-mediated protection was lacking in PPAR-alpha-deficient OLs exposed to cytokines. Collectively, these data provide unprecedented evidence that LOV-mediated inhibition of the Rho-ROCK signaling pathway boosts ROS detoxifying defense in OLs via PPAR-alpha-dependent mechanism that has implication in neurodegenerative disorders including MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available