4.6 Article

Endothelins reciprocally regulate VEGF-A and angiopoietin-1 production in cultured rat astrocytes: Implications on astrocytic proliferation

Journal

GLIA
Volume 60, Issue 12, Pages 1954-1963

Publisher

WILEY-BLACKWELL
DOI: 10.1002/glia.22411

Keywords

endothelin-1; brain injury; angiogenic factors; gene expression

Categories

Funding

  1. JPSP [21590108]

Ask authors/readers for more resources

Vascular endothelial growth factors (VEGFs) and angiopoietins (ANGs) are involved in pathophysiological responses in damaged nerve tissues. Astrocytes produce VEGFs and ANGs upon brain ischemia and traumatic injury. To clarify the extracellular signals regulating VEGF and ANG production, effects of endothelins (ETs), a family of endothelium-derived peptides, were examined in cultured rat astrocytes. ET-1 (100 nM) and Ala1,3,11,15-ET-1 (100 nM), an ETB receptor agonist, increased VEGF-A mRNA levels in cultured astrocytes, while ANG-1 mRNA was decreased by ETs. ET-1 did not affect astrocytic VEGF-B, placental growth factor (PLGF), and ANG-2 mRNA levels. The effects of ET-1 on VEGF-A and ANG-1 mRNAs were inhibited by BQ788, an ETB antagonist. Release of VEGF-A proteins from cultured astrocytes was increased by ET-1. In contrast, ET-1 reduced release of astrocytic ANG-1. Exogenous ET-1 (100 nM) and VEGF165 (100 ng/mL), an isopeptide of VEGF-A, stimulated bromodeoxyuridine (BrdU) incorporation into cultured astrocytes. Treatment with ET-1 and VEGF165 increased the numbers of cyclin D1-positive astrocytes. Exogenous ANG-1 (250 ng/mL) did not stimulate the BrdU incorporation. Increases in BrdU incorporation by ET-1 and VEGF165 were not affected by ANG-1. In 6070% confluent cultures, SU4312 (10 mu M), a VEGF receptor tyrosine kinase inhibitor, partially reduced the effects of ET-1 on BrdU incorporation and cyclin D1 expression. ET-induced BrdU incorporation and cyclin D1 expression were reduced by a neutralizing antibody against VEGF-A. Our findings suggest that ET-1 is a factor regulating astrocytic VEGF-A and ANG-1, and that increased VEGF-A production potentiates ET-induced astrocytic proliferation by an autocrine mechanism. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available