4.6 Article

Autophagy Is Activated by Proteasomal Inhibition and Involved in Aggresome Clearance in Cultured Astrocytes

Journal

GLIA
Volume 58, Issue 14, Pages 1766-1774

Publisher

WILEY
DOI: 10.1002/glia.21047

Keywords

glial cells; macroautophagy; rapamycin; heat shock proteins; ubiquitin

Categories

Funding

  1. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

A common pathway underlying a variety of neurodegenerative disorders is the aggregation and deposition of misfolded proteins. Proteasomal inhibition has been demonstrated to promote the formation of intracellular inclusions. We have shown before that astrocytes respond to the treatment with the proteasome inhibitor MG-132 by aggresome formation and cytoskeletal disturbances, but unlike oligodendrocytes do not die by apoptotic cell death and have the capability to recover. This study was undertaken to elucidate if the autophagy-lysosomal pathway participates in the efficient recovery process in astrocytes and is modulated under conditions of proteasomal inhibition. The data show that the autophagic pathway was stimulated during a 24-h treatment with the proteasome inhibitor MG-132 in a time and concentration-dependent manner. It remained at an elevated level throughout a 24-h recovery period in the absence of MG-132 and participates in the aggregate clearing process. In the presence of the specific inhibitor of macroautophagy, 3-methyladenine, cell viability was impaired, aggregates were not as efficiently removed and HSP25, alpha B-crystallin and ubiquitinated proteins remained in the insoluble protein fraction. LC3-II positive puncta, indicative of autophagosomes, were formed abundantly in the cells after proteasome inhibition and were seen in close association with the aggregates. Hence, the ability of astrocytes to upregulate autophagic degradation might contribute to their resistance against proteasomal stress situations and act as a compensatory mechanism when the proteasome is impaired. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available