4.6 Article

RIG-I Mediates Nonsegmented Negative-Sense RNA Virus-Induced Inflammatory Immune Responses of Primary Human Astrocytes

Journal

GLIA
Volume 58, Issue 13, Pages 1620-1629

Publisher

WILEY
DOI: 10.1002/glia.21034

Keywords

RNA viruses; astrocytes; CNS inflammation; RIG-I

Categories

Funding

  1. National Institutes of Health [NS050325, NS057434, NS064035]

Ask authors/readers for more resources

While astrocytes produce key inflammatory mediators following exposure to neurotropic nonsegmented negative-sense RNA viruses such as rabies virus and measles virus, the mechanisms by which resident central nervous system (CNS) cells perceive such viral challenges have not been defined. Recently, several cytosolic DExD/H box RNA helicases including retinoic acid-inducible gene I (RIG-I) have been described that function as intracellular sensors of replicative RNA viruses. Here, we demonstrate that primary human astrocytes constitutively express RIG-I and show that such expression is elevated following exposure to a model neurotropic RNA virus, vesicular stomatitis virus (VSV). Evidence for the functional nature of RIG-I expression in these cells comes from the observation that this molecule associates with its downstream effector molecule, interferon promoter stimulator-I, following VSV infection and from the finding that a specific ligand for RIG-I elicits astrocyte immune responses. Importantly, RIG-I knockdown significantly reduces inflammatory cytokine production by VSV-infected astrocytes and inhibits the production of soluble neurotoxic mediators by these cells. These findings directly implicate RIG-I in the initiation of inflammatory immune responses by human glial cells and provide a potential mechanism underlying the neuronal cell death associated with acute viral CNS infections. (C) 2010 Wiley-Liss,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available