4.6 Article

Chemokine Receptor CXCR4 Signaling Modulates the Growth Factor-Induced Cell Cycle of Self-Renewing and Multipotent Neural Progenitor Cells

Journal

GLIA
Volume 59, Issue 1, Pages 108-118

Publisher

WILEY
DOI: 10.1002/glia.21080

Keywords

CXCL12; CXCR4; neural progenitor cells; proliferation; cell cycling

Categories

Funding

  1. NIH-NINDS [RO132151]
  2. ChemoCentryx, Mountain View, CA

Ask authors/readers for more resources

CXC chemokine receptor CXCR4 is expressed in vitro in both human and rodent adult neural progenitor cells (NPCs). It has been suggested that the CXCL12-CXCR4 axis potentially enhances the proliferation of NPCs. However, whether CXCR4 is expressed in the neural stem cells (NSCs), a subset of self-renewing and multipotent NPCs, and whether CXCR4 signaling is directly required for their proliferation are not clear. In this study, we report that CXCR4 is expressed in a subpopulation of NPCs in the early embryonic ventricular zone. In studies of a CXCR4(eGFP) bacterial artificial chromosomal (BAC) transgenic mouse line, we further isolated NPCs from E12.5 transgenic telencephalon and GFP(+) cells demonstrated self-renewal and multipotency in neurosphere assays in vitro. Consistent with these observations, we enriched GFP(+)/CXCR4(+) cells by fluorescence activated cell sorting (FACS) with either CXCR4 antibody 12G5 or GFP. Furthermore, we observed that CXCL12 alone did not activate the self-renewal of NPCs or increase the proliferation of NPCs that are induced by bFGF/EGF. However, we found that blocking CXCR4 receptor with antagonist AMD3100 impaired the bFGF/EGF-induced expansion of GFP(+) NPCs through modulating their cell cycling. In addition, AMD3100 treatment of pregnant mice reduced the generation of neurospheres from E12.5 embryos. Our data suggest that CXCR4 is a potential cell surface marker for early embryonic NSCs and modulates growth-factor signaling. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available