4.6 Article

Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori

Journal

JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B
Volume 16, Issue 10, Pages 875-882

Publisher

ZHEJIANG UNIV
DOI: 10.1631/jzus.B1500060

Keywords

Bombyx mori; Midgut; Immune; Hydrogen peroxide; Nitric oxide; Antimicrobial peptide

Funding

  1. National Natural Science Foundation of China [31272497]
  2. National Natural Science Foundation of China [31272497]

Ask authors/readers for more resources

Insect gut epithelial cells produce reactive oxygen species (ROS) and antimicrobial peptides (AMPs) to protect hosts from pathogenic microorganisms. In this study, we evaluate the pathogenicity of Pseudomonas aeruginosa and Bacillus bombysepticus in the silkworm, Bombyx mori. Survival curves show that B. bombysepticus is deadly when larval silkworms are infected orally. Bacterial infection caused intestinal hydrogen peroxide (H2O2) and nitric oxide (NO) levels to increase significantly by 8 and 16 h post-infection (hpi), respectively. Real-time quantitative polymerase chain reaction (qPCR) analysis shows that the transcription levels of dual oxidase (Duox) and catalase (CAT) are highly up-regulated by P. aeruginosa infection at 8 hpi. P. aeruginosa infection induced nitric oxide synthase 2 (NOS2) expression at 16 hpi, which contributes to the generation of NO. mRNA levels of AMP genes, specifically Glovorin 2 and Glovorin 3, which obviously increase during the early infection stage. These results indicate that invading bacteria elevate intestinal ROS and NO levels and induce AMP gene transcription, which contributes to intestinal immune defense.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available