4.4 Article

Accurate and High-Precision Determination of Boron Isotopic Ratios at Low Concentration by MC-ICP-MS (Neptune)

Journal

GEOSTANDARDS AND GEOANALYTICAL RESEARCH
Volume 35, Issue 2, Pages 275-284

Publisher

WILEY
DOI: 10.1111/j.1751-908X.2010.00073.x

Keywords

boron isotopes; standard solution; MC-ICP-MS; NIST SRM 951; IAEA-B1 to B3

Funding

  1. Research Division of BRGM

Ask authors/readers for more resources

We report an approach for the accurate and reproducible measurement of boron isotope ratios in natural waters using an MC-ICP-MS (Neptune) after wet chemistry sample purification. The sample matrix can induce a drastic shift in the isotopic ratio by changing the mass bias. It is shown that, if no purification is carried out, the direct measurement of a seawater diluted one hundred times will induce an offset of -7 parts per thousand in the isotopic ratio, and that, for the same concentration, the greater the atomic mass of the matrix element, the greater the bias induced. Whatever the sample, it is thus necessary to remove the matrix. We propose a method adapted to water samples allowing purification of 100 ng of boron with a direct recovery of boron in 2 ml of 3% v/v HNO3, which was our working solution. Boron from the International Atomic Energy Agency IAEA-B1 seawater reference material and from the two groundwater reference materials IAEA-B2 and IAEA-B3, was chemically purified, as well as boron from the certified reference material NIST SRM 951 as a test. The reproducibility of the whole procedure (wet chemistry and MC-ICP-MS measurement) was +/- 0.4 parts per thousand (2s). Accuracy was verified by comparison with positive-TIMS values and with recommended values. Seawater, being homogeneous for boron isotope ratios, is presently the only natural water material that is commonly analysed for testing accuracy worldwide. We propose that the three IAEA natural waters could be used as reference samples for boron isotopes, allowing a better knowledge of their isotopic ratios, thus contributing to the certification of methods and improving the quality of the boron isotopic ratio measurements for all laboratories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available