4.6 Article

Incremental linear-elastic response of rocks containing multiple rough fractures: Similarities and differences with traction-free cracks

Journal

GEOPHYSICS
Volume 75, Issue 1, Pages D1-D11

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.3268034

Keywords

hydrocarbon reservoirs; rocks; wave propagation

Ask authors/readers for more resources

Fractures in the subsurface serve as conduits for fluids and gas, connecting remote hydrocarbon reservoir sections to production wells. Seismic and sonic data are popular sources for information on fracture properties. The most commonly used model to extract fracture information from such data is based on the paradigm of the displacement discontinuity interface, without a direct link to relevant characteristics such as the surface roughness properties of a fracture. Indeed, fractures can be modeled as displacement discontinuity surfaces, and in this sense they resemble traction-free cracks. In literature, cracks and fractures are not always properly distinguished, perhaps because the terms are often perceived as synonyms. However, microstructural parameters that control magnitudes of the discontinuities - and thus the effec-tive stiffnesses - are entirely different: statistics of contacts for fractures versus crack density for traction-free cracks. We explore the effective elasticity of rocks containing multiple fractures using a model of a fracture as two rough surfaces with isolated contacts. This is done in the context of the incremental, linear elastic response to small stress changes, typical in wave-propagation problems. Fractures are dry or may have diverse orientations, and contacts may or may not be Hertzian. A link exists between contact characteristics and effective stiffness of single and multiple fractures. Our work examines and accounts for the strong effect of interactions between individual contacts by means of a double sum over mutual positions as well as outlines the differences and similarities between theories for cracks and fractures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available