4.6 Article

Joint inversion of crosshole radar and seismic traveltimes acquired at the South Oyster Bacterial Transport Site

Journal

GEOPHYSICS
Volume 73, Issue 4, Pages G29-G37

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2937467

Keywords

-

Ask authors/readers for more resources

The structural approach to joint inversion, entailing common boundaries or gradients, offers a flexible and effective way to invert diverse types of surface-based and/or crosshole geophysical data. The cross-gradients function has been introduced as a means to construct models in which spatial changes in two distinct physical-property models are parallel or antiparallel. Inversion methods that use such structural constraints also provide estimates of nonlinear and nonunique field-scale relationships between model parameters. Here, we jointly invert crosshole radar and seismic traveltimes for structurally similar models using an iterative nonlinear traveltime tomography algorithm. Application of the inversion scheme to synthetic data demonstrates that it better resolves lithologic boundaries than the individual inversions alone. Tests of the scheme on GPR and seismic data acquired within a shallow aquifer illustrate that the resultant models have improved correlations with flowmeter data in comparison with models based on individual inversions. The highest correlation with the flowmeter data is obtained when the joint inversion is combined with a stochastic regularization operator and the vertical integral scale is estimated from the flowmeter data. Point-spread functions show that the most significant resolution improvements offered by the joint inversion are in the horizontal direction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available