4.7 Article

A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 41, Issue 13, Pages 4569-4577

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014GL060509

Keywords

-

Funding

  1. National Oceanic and Atmospheric Administration (NOAA) Center for Sponsored Coastal Ocean Research (CSCOR) [NA10NOS4780146]
  2. Florida Sea Grant [NA10OAR4170079]

Ask authors/readers for more resources

Hydrologic models can be categorized as being either Newtonian or Darwinian in nature. The Newtonian approach requires a thorough understanding of the individual physical processes acting in a watershed in order to build a detailed hydrologic model based on the conservation equations. The Darwinian approach seeks to explain the behavior of a hydrologic system as a whole by identifying simple and robust temporal or spatial patterns that capture the relevant processes. Darwinian-based hydrologic models include the Soil Conservation Service (SCS) curve number model, the abcd model, and the Budyko-type models. However, these models were developed based on widely differing principles and assumptions and applied to distinct time scales. Here, we derive a one-parameter Budyko-type model for mean annual water balance which is based on a generalization of the proportionality hypothesis of the SCS model and therefore is independent of temporal scale. Furthermore, we show that the new model is equivalent to the key equation of the abcd model. Theoretical lower and upper bounds of the new model are identified and validated based on previous observations. Thus, we illustrate a temporal pattern of water balance amongst Darwinian hydrologic models, which allows for synthesis with the Newtonian approach and offers opportunities for progress in hydrologic modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available