4.7 Article

Impact of acetone (photo) oxidation on HOx production in the UT/LMS based on CARIBIC passenger aircraft observations and EMAC simulations

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 41, Issue 9, Pages 3289-3297

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014GL059480

Keywords

-

Funding

  1. Germany Ministry of Science and Education
  2. Frankfurt Airport
  3. Fraport AG
  4. Max Planck Society

Ask authors/readers for more resources

Until a decade ago, acetone was assumed to be a dominant HOx source in the dry extra-tropical upper troposphere (ex-UT). New photodissociation quantum yields of acetone and the lack of representative data from the ex-UT challenged that assumption. Regular mass spectrometric observations onboard the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) passenger aircraft deliver the first representative distribution of acetone in the UT/LMS (UT/lowermost stratosphere). Based on diverse CARIBIC trace gas data and non-observed parameters taken from the model ECHAM5/MESSy for Atmospheric Chemistry, we quantify the HOx source in the UT/LMS from (photo) oxidation of acetone. The findings are contrasted to HOx production from ozone photolysis, overall the dominant tropospheric HOx source. It is shown that HOx production from acetone (photo) oxidation reaches up to 95% of the HOx source from ozone photolysis in autumn in the UT and on average similar to 61% in summer. That is, acetone is a significant source of HOx in the UT/LMS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available