4.7 Article

High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 40, Issue 17, Pages 4520-4525

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/grl.50916

Keywords

radiation belts; wave particle interactions

Funding

  1. Japan Society for the Promotion of Science [23340146, 23224011]
  2. Grants-in-Aid for Scientific Research [23656263, 23340146] Funding Source: KAKEN

Ask authors/readers for more resources

Relativistic electron flux in the outer radiation belt tends to increase during the high-speed solar wind stream (HSS) events. However, HSS events do not always cause large flux enhancement. To determine the HSS events that cause such enhancement and the mechanisms that are responsible for accelerating the electrons, we analyzed long-term plasma data sets, for periods longer than one solar cycle. We demonstrate that during HSS events with the southward interplanetary magnetic field (IMF)-dominant HSS (SBz-HSS), relativistic electrons are accelerated by whistler mode waves; however, during HSS events with the northward IMF-dominant HSS, this acceleration mechanism is not effective. The differences in the responses of the outer radiation belt flux variations are caused by the differences in the whistler mode wave-electron interactions associated with a series of substorms. During SBz-HSS events, hot electron injections occur and the thermal plasma density decreases due to the shrinkage of the plasmapause, causing large flux enhancement of relativistic electrons through whistler mode wave excitation. These results explain why large flux enhancement of relativistic electrons tends to occur during SBz-HSS events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available