4.7 Article

Hypoxia in future climates: A model ensemble study for the Baltic Sea

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 38, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GL049929

Keywords

-

Funding

  1. European Community [217246]
  2. Swedish Environmental Protection Agency [08/381]
  3. German Federal Ministry of Education and Research [03F0492A]

Ask authors/readers for more resources

Using an ensemble of coupled physical-biogeochemical models driven with regionalized data from global climate simulations we are able to quantify the influence of changing climate upon oxygen conditions in one of the numerous coastal seas (the Baltic Sea) that suffers worldwide from eutrophication and from expanding hypoxic zones. Applying various nutrient load scenarios we show that under the impact of warming climate hypoxic and anoxic areas will very likely increase or at best only slightly decrease (in case of optimistic nutrient load reductions) compared to present conditions, regardless of the used global model and climate scenario. The projected decreased oxygen concentrations are caused by (1) enlarged nutrient loads due to increased runoff, (2) reduced oxygen flux from the atmosphere to the ocean due to increased temperature, and (3) intensified internal nutrient cycling. In future climate a similar expansion of hypoxia as projected for the Baltic Sea can be expected also for other coastal oceans worldwide. Citation: Meier, H. E. M., H. C. Andersson, K. Eilola, B. G. Gustafsson, I. Kuznetsov, B. Muller-Karulis, T. Neumann, and O. P. Savchuk (2011), Hypoxia in future climates: A model ensemble study for the Baltic Sea, Geophys. Res. Lett., 38, L24608, doi:10.1029/2011GL049929.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available