4.7 Article

Clay mineral reactions caused by frictional heating during an earthquake: An example from the Taiwan Chelungpu fault

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 35, Issue 16, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008GL034476

Keywords

-

Ask authors/readers for more resources

To understand the chemical reactions of clay minerals in a fault zone during an earthquake, we analyzed the clay minerals in the Chelungpu fault, which slipped during the 1999 Chi-Chi earthquake. X-ray diffraction spectroscopy showed that kaolinite and smectite contents were lower in the black gouge zone than in the surrounding gray gouge, breccia, or fracture-damaged zones. We applied a chemical kinetics approach to examine whether dehydroxylation of kaolinite and dehydration of interlayer water, dehydroxylation, and illitization of smectite occurred during coseismic frictional heating, and found that the first two reactions could complete under the temperature-time profile of the Chi-Chi earthquake, reconstructed by a previous study. Because dehydration of smectite interlayer water and dehydroxylation of kaolinite would have completed 3.6 and 8.2 s after the beginning of slip, the resulting release of water might have affected the frictional mechanism during the earthquake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available