4.7 Article

Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 35, Issue 14, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008GL034437

Keywords

-

Ask authors/readers for more resources

We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 +/- 0.010 mu strain/yr adjacent to the creeping SAF, with 1 - 4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31 - 35 mm/yr and a shallow (0 - 12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available