4.5 Article

Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization

Journal

GEOPHYSICAL PROSPECTING
Volume 61, Issue 3, Pages 582-598

Publisher

WILEY
DOI: 10.1111/j.1365-2478.2012.01080.x

Keywords

Hybrid genetic algorithm; Neural network; Particle swarm optimization; permeability; Well log data

Funding

  1. National Iranian Oil Company
  2. Petroleum University of Technology (PUT)

Ask authors/readers for more resources

Reservoir characterization involves describing different reservoir properties quantitatively using various techniques in spatial variability. Nevertheless, the entire reservoir cannot be examined directly and there still exist uncertainties associated with the nature of geological data. Such uncertainties can lead to errors in the estimation of the ultimate recoverable oil. To cope with uncertainties, intelligent mathematical techniques to predict the spatial distribution of reservoir properties appear as strong tools. The goal here is to construct a reservoir model with lower uncertainties and realistic assumptions. Permeability is a petrophysical property that relates the amount of fluids in place and their potential for displacement. This fundamental property is a key factor in selecting proper enhanced oil recovery schemes and reservoir management. In this paper, a soft sensor on the basis of a feed-forward artificial neural network was implemented to forecast permeability of a reservoir. Then, optimization of the neural network-based soft sensor was performed using a hybrid genetic algorithm and particle swarm optimization method. The proposed genetic method was used for initial weighting of the parameters in the neural network. The developed methodology was examined using real field data. Results from the hybrid method-based soft sensor were compared with the results obtained from the conventional artificial neural network. A good agreement between the results was observed, which demonstrates the usefulness of the developed hybrid genetic algorithm and particle swarm optimization in prediction of reservoir permeability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available