4.3 Article

Infrasound from the 2012-2013 Plosky Tolbachik, Kamchatka fissure eruption

Journal

JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
Volume 307, Issue -, Pages 68-78

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jvolgeores.2015.08.019

Keywords

Infrasound; Monopole; Inversion; Emissions; Tolbachik; Volcano

Funding

  1. UAF Geophysical Institute
  2. NSF [EAR 1331084]
  3. Division Of Earth Sciences
  4. Directorate For Geosciences [1331084] Funding Source: National Science Foundation

Ask authors/readers for more resources

We use both regional and local infrasound data to investigate the dynamics of the 2012-2013 eruption of Tolbachik Volcano, Kamchatka, Russia during select periods of time. Analysis of regional data recorded at the IMS array IS44 in southern Kamchatka, similar to 384 km from the vent focuses on the eruption onset in November 2012, while analysis of local data focuses on activity in February and August 2013. Signals recorded from Tolbachik suggest a change in eruptive intensity possibly occurred from November 27-30, 2012. Local infrasound data recorded at distances of 100-950 m from the vent are characterized primarily by repeated, transient explosion signals indicative of gas slug bursts. Three methods are employed to pick slug burst events in February and August. The nature of slug bursts makes a monopole acoustic source model particularly fitting, permitting volume outflux and slug radius calculations for individual events. Volume outfluxes and slug radii distributions provide three possible explanations for the eruption style of Tolbachik Volcano from mid-February to late August. Cumulative outflux for slug bursts (i.e. mass of emissions from individual bursts) derived by infrasound for both February and August range from <100 to similar to 3000 kg. These values are greater than infrasound-derived emissions calculated at Pacaya Volcano, but less than those calculated at Mt. Erebus Volcano. From this, we determine slug bursts at Tolbachik Volcano in February and August were larger on average than those at Pacaya Volcano in 2010, but smaller on average than those at Mt. Erebus in 2008. Our overall emissions estimates are in general agreement with estimates from satellite observations. This agreement supports the monopole source inversion as a potential method for estimating mass of emissions from slug burst events. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available