4.6 Article

Determination and uncertainty of moment tensors for microearthquakes at Okmok Volcano, Alaska

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 190, Issue 3, Pages 1689-1709

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-246X.2012.05574.x

Keywords

Earthquake source observations; Volcano seismology; Body waves

Funding

  1. USGS Volcano Hazards Program under American Recovery and Reinvestment Act
  2. United States Geological Survey [G10AC00018]
  3. Grant Agency of the Academy of Sciences of Czech Republic [P210/12/2235]

Ask authors/readers for more resources

Efforts to determine general moment tensors (MTs) for microearthquakes in volcanic areas are often hampered by small seismic networks, which can lead to poorly constrained hypocentres and inadequate modelling of seismic velocity heterogeneity. In addition, noisy seismic signals can make it difficult to identify phase arrivals correctly for small magnitude events. However, small volcanic earthquakes can have source mechanisms that deviate from brittle double-couple shear failure due to magmatic and/or hydrothermal processes. Thus, determining reliable MTs in such conditions is a challenging but potentially rewarding pursuit. We pursued such a goal at Okmok Volcano, Alaska, which erupted recently in 1997 and in 2008. The Alaska Volcano Observatory operates a seismic network of 12 stations at Okmok and routinely catalogues recorded seismicity. Using these data, we have determined general MTs for seven microearthquakes recorded between 2004 and 2007 by inverting peak amplitude measurements of P and S phases. We computed Green's functions using precisely relocated hypocentres and a 3-D velocity model. We thoroughly assessed the quality of the solutions by computing formal uncertainty estimates, conducting a variety of synthetic and sensitivity tests, and by comparing the MTs to solutions obtained using alternative methods. The results show that MTs are sensitive to station distribution and errors in the data, velocity model and hypocentral parameters. Although each of the seven MTs contains a significant non-shear component, we judge several of the solutions to be unreliable. However, several reliable MTs are obtained for a group of previously identified repeating events, and are interpreted as compensated linear-vector dipole events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available