4.6 Article

Crustal structure and seismic anisotropy near the San Andreas Fault at Parkfield, California

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 178, Issue 2, Pages 1098-1104

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-246X.2009.04198.x

Keywords

Composition of the continental crust; Body waves; Seismic anisotropy; Continental tectonics: strike-slip and transform; Crustal structure; North America

Funding

  1. NSF [EAR-0125121]

Ask authors/readers for more resources

P>Receiver functions (RFs) from station PKD located similar to 3 km SW of the San Andreas Fault (SAF) samples the Salinian terrane near Parkfield. Crustal multiples indicate a 26-km-thick crust with a V-P/V-S of 1.88, which is slightly lower (1.83) for the upper and middle crust in the west. For the mid-crust, arrivals are observed at times corresponding to recently imaged seismic reflectors and may correspond to a layer of metasedimentary rocks below the base of the granitic batholith exposed at the surface. For the lower crust, RFs display strong polarity reversals with backazimuth and a change in Moho amplitude that require strong seismic anisotropy (> 15 per cent) in a low velocity, high V-P/V-S, possibly serpentinite or fluid filled schist layer that has a ENE dipping (similar to 35 degrees) rock fabric. Similar patterns of amplitude variations and polarity reversal observed in RFs for some southern California stations located west of the SAF support the hypothesis that the cause of these data characteristics is a regionally prevalent lower crustal anisotropy. The orientation of this anisotropic fabric is inconsistent with the recent San Andreas sense of shear and is most likely a fossilized fabric of past eastward-directed (Farallon Plate) subduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available