4.6 Article

Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 177, Issue 2, Pages 451-462

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-246X.2009.04078.x

Keywords

Marine magnetics and palaeomagnetics; Sedimentary basin processes; Arctic region; Atlantic Ocean

Ask authors/readers for more resources

Five basin-wide seismic reflection profiles of up to 550 km each were acquired in the Arctic Ocean and the northern North Atlantic in 2001 and 2002. The main objective was to investigate the depth to the basement and to analyse the crustal structure, morphology and roughness of ultra-slow spreading ridges of the Gakkel, Molloy and Knipovich ridges. To date, little is known to date of the ultra-slow spectrum of such spreading ridges. The seismic profiles of all investigated ridges show similar morphological characteristics with deep axial valleys and rough basement topography. Magnetic data compilation and interpretation suggests that the ultra-slow spreading systems are fairly stable and existed during the entire evolution of the basins to the north of the Greenland Fracture Zone. The thermal subsidence curve was calculated and corrected for sediment loads, and crustal roughness values are estimated for all five profiles. The resulting roughness values append the global roughness data set for ultra-slow spreading systems. The results are higher than those predicted by interpolating existing global roughness. This study confirms the presence of a global relationship between crustal roughness, ridge morphology and spreading rates. New curve fits, supporting the global relationship, are discussed. Data on present spreading rates, ridge morphology, subsidence and roughness provide a better insight into the development of the axial ridge morphology in the study area. The results show that the basins to the north of the Greenland Fracture Zone were formed at ultra-slow spreading axial rift valleys and continued spreading at ultra-slow rates to the present day configuration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available