4.6 Article

Channel patterns: Braided, anabranching, and single-thread

Journal

GEOMORPHOLOGY
Volume 120, Issue 3-4, Pages 353-364

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.geomorph.2010.04.010

Keywords

Channel pattern; Braided; Anabranching; Meandering; Anabranches

Ask authors/readers for more resources

A new channel pattern classification is presented based on theoretically derived channel pattern discriminant functions. The thresholds are formulated as power laws that relate the critical slope associated with a change in channel pattern to dimensionless discharge and relative bank strength. One threshold demarcates the boundary between stable single-thread channels (both straight and meandering) and stable multiple-thread channels (anabranching). Another threshold separates anabranching from braided channels, where braided channels are considered to be fundamentally unstable. The exponents of the thresholds are nearly identical to that in the threshold equation originally proposed by Leopold and Wolman (1957), and the coefficients are quite similar as well. An analysis of their data set using our dimensionless approach reveals that no fundamental difference exists between meandering and straight patterns, and thus data from both types are grouped together under the more general heading of single-thread channels. Furthermore, we demonstrate that over a limited range of conditions, an unstable single-thread channel can form stable multiple-threads; but that for systems far from the threshold bounding the single-thread channels, the number of divisions required to produce stable anabranches grows geometrically: this motivates a separation of multiple-thread channels into anabranching and braided types. Our theoretical thresholds are then compared against several large data sets of field data, and the results broadly confirm our proposed thresholds. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available