4.6 Article

Modeling impacts of erosion and deposition on soil organic carbon in the Big Creek Basin of southern Illinois

Journal

GEOMORPHOLOGY
Volume 106, Issue 3-4, Pages 304-314

Publisher

ELSEVIER
DOI: 10.1016/j.geomorph.2008.11.011

Keywords

Soil organic carbon; Erosion; Deposition; GeoWEPP; CENTURY

Funding

  1. National Science Foundation [0410187]
  2. National Science Foundation (NSF)
  3. Direct For Social, Behav & Economic Scie
  4. Division Of Behavioral and Cognitive Sci [0410187] Funding Source: National Science Foundation

Ask authors/readers for more resources

Land use land cover (LULC) plays an important role in influencing the spatial intensity of water erosion which is the primary governor of horizontal translocation of soil organic carbon (SOC). The fate of redistributed SOC through erosion remains debatable and the mineralization rate of exposed SOC protected in soil aggregates is the major focus of this argument Cohesive spatially explicit modeling of SOC and erosion can potentially reduce some of the controversy. To this end we simulated erosion/deposition, and photosynthetic (in situ) flux of SOC in a small watershed of similar to 28.42 ha, located in the Big Creek basin of southern Illinois. The main objectives of this research were: (a) to study erosion and deposition dynamics under different LULC, (b) to examine the extent of carbon dislocation and deposition possible in the study area, and (c) to determine the net SOC accretion and reduction possible by accounting for gains through annual photosynthesis and deposition, and losses from erosion under different LULC scenarios. To fulfill our objectives, we combined GeoWEPR an erosion/deposition process model, with CENTURY 4.0, an ecosystem model used for simulating SOC. Our results show that between 11 and 31% of the eroded soil gets deposited in the same basin depending on the LULC type, leaving the remainder to be transported downstream. Additionally, as expected, SOC flux due to erosion and deposition varies with the type of management practices. In the case of conservation management practices, the flux associated with erosion and deposition remains below 10% in comparison to in situ SOC transformations due to annual photosynthesis. However in the case of non-conservation management practices this proportion rises above 50%. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available