4.3 Article

Increased Abundance of Gallionella spp., Leptothrix spp. and Total Bacteria in Response to Enhanced Mn and Fe Concentrations in a Disturbed Southern Appalachian High Elevation Wetland

Journal

GEOMICROBIOLOGY JOURNAL
Volume 29, Issue 2, Pages 124-138

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01490451.2011.558557

Keywords

bacteria; wetland; manganese oxidation

Funding

  1. National Science Foundation [0935270]
  2. Appalachian State University
  3. Division Of Ocean Sciences
  4. Directorate For Geosciences [0935270] Funding Source: National Science Foundation

Ask authors/readers for more resources

The Sorrento wetland hosts several Fe-and Mn-rich seeps that are reported to have appeared after the area was disturbed by recent attempts at development. Culture-independent and culture-based analyses were utilized to characterize the microbial community at the main site of the Fe and Mn seep. Several bacteria capable of oxidizing Mn(II) were isolated, including members related to the genera Bacillus, Lysinibacillus, Pseudomonas, and Leptothrix, but none of these were detected in clone libraries. Most probable number assays demonstrated that seep and wetland sites contained higher numbers of culturable Mn-oxidizing microorganisms than an upstream reference site. When compared with quantitative real time PCR (qPCR) assays of total bacteria, MPN analyses indicated that less than 0.01% of the total population (estimated around 10(9) cells/g) was culturable. Light microscopy and fluorescence in situ hybridization (FISH) images revealed an abundance of morphotypes similar to Fe-and Mn-oxidizing Leptothrix spp. and Gallionella spp. in seep and wetland sites. FISH allowed identification of Leptothrix-type sheath-forming organisms in seep samples but not in reference samples. Gallionella spp. and Leptothrix spp. cells numbers were estimated using qPCR with a novel primer set that we designed. Results indicated that numbers of Gallionella, Leptothrix or total bacteria were all significantly higher at the seep site relative to the reference site (where Gallionella was below detection). Interestingly, numbers of Leptothrix in the seep site were estimated at only 10(7) cells/g and were not statistically different in the late summer versus the late winter, despite dramatic changes in sheath abundance (as indicated by microscopy). qPCR also indicated that Gallionella spp. may represent up to 10% (3 x 108 cells/g) of the total bacteria in seep samples. These data corroborate clone library data from samples taken in October 2008, where 11 SSU rRNA sequences related to Gallionella spp. were detected out of 77 total sequences (roughly 10-15%), and where Leptothrix sequences were not detected. Analysis of this SSU rRNA clonal library revealed that a diverse microbial community was present at seep sites. At a 3% difference cutoff, 30 different operational taxonomic units were detected out of 77 sequences analyzed. Dominant sequence types clustered among the beta-and gamma-Proteobacteria near sequences related to the genera Ideonella, Rhodoferax, Methylotenera, Methylobacter, and Gallionella. Overall, results suggest that high metal concentrations at the seep sites have enriched for Fe-and Mn-oxidizing bacteria including organisms related to Gallionella and Leptothrix species, and that members of these genera coexist within a diverse microbial community.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available