4.7 Article

Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification

Journal

GEOLOGY
Volume 37, Issue 12, Pages 1131-1134

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G30210A.1

Keywords

-

Categories

Funding

  1. Woods Hole Oceanographic Institution
  2. National Science Foundation

Ask authors/readers for more resources

Anthropogenic elevation of atmospheric carbon dioxide (pCO(2)) is making the oceans more acidic, thereby reducing their degree of saturation with respect to calcium carbonate (CaCO3). There is mounting concern over the impact that future CO2-induced reductions in the CaCO3 saturation state of seawater will have on marine organisms that construct their shells and skeletons from this mineral. Here, we present the results of 60 d laboratory experiments in which we investigated the effects of CO2-induced ocean acidification on calcification in 18 benthic marine organisms. Species were selected to span a broad taxonomic range (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida) and included organisms producing aragonite, low-Mg calcite, and high-Mg calcite forms of CaCO3. We show that 10 of the 18 species studied exhibited reduced rates of net calcification and, in some cases, net dissolution under elevated pCO(2). However, in seven species, net calcification increased under the intermediate and/or highest levels of pCO(2), and one species showed no response at all. These varied responses may reflect differences amongst organisms in their ability to regulate pH at the site of calcification, in the extent to which their outer shell layer is protected by an organic covering, in the solubility of their shell or skeletal mineral, and in the extent to which they utilize photosynthesis. Whatever the specific mechanism(s) involved, our results suggest that the impact of elevated atmospheric pCO(2) on marine calcification is more varied than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available