4.7 Article

Paleogeographic isolation of the Cretaceous to Eocene Sevier hinterland, east-central Nevada: Insights from U-Pb and (U-Th)/He detrital zircon ages of hinterland strata

Journal

GEOLOGICAL SOCIETY OF AMERICA BULLETIN
Volume 123, Issue 5-6, Pages 1141-1160

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/B30029.1

Keywords

-

Funding

  1. National Science Foundation [EAR-0610103, EAR-0443387, EAR-0732436, EAR-0414817]
  2. Nevada Petroleum Society
  3. Geological Society of America
  4. Rocky Mountain Section Society for Sedimentary Geology
  5. American Association of Petroleum Geologists (AAPG)

Ask authors/readers for more resources

The Late Cretaceous to Paleogene Sevier hinterland of east-central Nevada is widely regarded as an orogenic plateau that has since undergone topographic collapse. New U-Pb detrital zircon age data consisting of 1296 analyses from the Lower Cretaceous Newark Canyon Formation and the Upper Cretaceous to Eocene Sheep Pass Formation indicate that Precambrian detrital zircon populations recycled from local Paleozoic strata are dominant. Subordinate Mesozoic zircon populations are derived mainly from local backarc volcanic centers of Late Jurassic and Early Cretaceous age, while ca. 38-36 Ma detrital zircon age peaks record the local onset of Eocene volcanism. Sevier hinter land deposits of east-central Nevada lack significant Triassic, Early Jurassic, and Late Cretaceous populations common in terranes of western Nevada and the Sierra Nevada magmatic arc. These data suggest that long-term evolution of the Sevier Plateau involved geographic isolation through a combination of high relief and rugged topography related to Early Cretaceous shortening, and continued isolation through development of latest Cretaceous to Eocene internally drained, extensional basins. The (U-Th)/He zircon ages obtained from the Sheep Pass Formation record late Paleozoic, Early Cretaceous, and Late Cretaceous cooling through 180 C. Preservation of late Paleozoic (ca. 265 Ma) cooling ages indicates that much of the Upper Paleozoic section within east-central Nevada that contributed detritus to the Sheep Pass basin was unaffected by deep thrust burial, or by burial beneath thick Mesozoic sedimentary cover. Early Cretaceous (ca. 135 Ma) cooling ages are potentially coeval with shortening along the central Nevada fold-and-thrust belt, although ca. 80 Ma cooling ages within the Sheep Pass Formation are coeval with hinter land midcrustal extension. Together, these new data provide support for previous interpretations that the Sevier hinterland represents an ancient high-elevation orogenic plateau, and that the latest Cretaceous locally marks a transition from contraction to extension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available