4.7 Article

Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry

Journal

GEOLOGICAL SOCIETY OF AMERICA BULLETIN
Volume 120, Issue 5-6, Pages 571-587

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/B26231.1

Keywords

Colorado Plateau; (U-Th)/He; Grand Canyon; unroofing; incision; uplift; thermochronometry

Ask authors/readers for more resources

The source of buoyancy for the uplift of cratonic plateaus is a fundamental question in continental dynamics. The similar to 1.9 km uplift of the Colorado Plateau since the Late Cretaceous is a prime example of this problem. We used apatite (U-Th)/He thermochronometry (230 analyses; 36 samples) to provide the first single-system, regional-scale proxy for the unroofing history of the southwestern quadrant of the plateau. The results confirm overall southwest to northeast unroofing, from plateau margin to plateau interior. A single phase of unroofing along the plateau margin in Late Cretaceous to Early Tertiary (Sevier-Laramide) time contrasts with multiphase unroofing of the southwestern plateau interior in Early and mid- to Late Tertiary time. The Early Cretaceous was characterized by northeastward tilting and regional erosion, followed by aggradation of >= 1500 m of Upper Cretaceous sediments along the eroded plateau margin. Sevier-Laramide denudation affected the entire southwestern plateau, was concentrated along the plateau margin, and migrated from northwest to southeast. Following a period of relative stability of the landscape from ca. 50-30 Ma, significant unroofing of the southwestern plateau interior occurred between ca. 28 and 16 Ma. Additional denudation north of the Grand Canyon took place in latest Tertiary time. Mid-Tertiary dates from the Grand Canyon basement at the bottom of the Upper Granite Gorge limit significant incision of the modern Grand Canyon below the Kaibab surface to <23 Ma. Modeling the age distributions of samples from the basement and Kaibab surface nearby suggests that the gorge and the plateau surface had similar Early to mid-Tertiary thermal histories, despite their >1500 m difference in vertical structural position. If these models are correct, they indicate that a proto-Grand Canyon of kilometer-scale depth had incised post-Paleozoic strata by the Early Eocene. Evidence for kilometer-scale mid-Tertiary relief in northeast-flowing drainages along the plateau margin, as well as the mid-Tertiary episode of plateau interior unroofing, imply that the southwestern plateau interior had attained substantial elevation by at least 25-20 Ma, if not much earlier. These observations are inconsistent with any model calling for exclusively Late Tertiary uplift of the southwestern plateau. Sevier-Laramide plateau surface uplift and incision thus result from one or more processes that enhanced the buoyancy of the plateau lithosphere, expanding the Cordillera's orogenic highlands into its low-standing cratonic foreland. The onset of the Laramide slab's demise at ca. 40 Ma and the major pulse of extension in the Basin and Range from ca. 16-10 Ma appear to have had little influence on the denudation history of the southwestern plateau. In contrast, the post-Laramide unroofing episodes may be explained by drainage adjustments induced by rift-related lowering of regions adjacent to the plateau, without the need to otherwise modify the plateau lithosphere. Our data do not preclude a large component of post-Early Eocene elevation gain (or the geodynamic mechanisms it may imply), but they do point toward Laramide-age buoyancy sources as the initial cause of significant surface uplift, ending more than 500 m.y. of residence near sea level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available