4.5 Article

Hydrothermal convection in and around mineralized fault zones: insights from two- and three-dimensional numerical modeling applied to the Ashanti belt, Ghana

Journal

GEOFLUIDS
Volume 9, Issue 2, Pages 116-137

Publisher

WILEY-HINDAWI
DOI: 10.1111/j.1468-8123.2009.00247.x

Keywords

fault zones; gold mineralizations; hydrothermal convection; numerical modeling

Funding

  1. BRGM

Ask authors/readers for more resources

Among hydrogeological processes, free convection in faults has been cited as a possible cause of gold mineralization along major fault zones. Here, we investigate the effects of free convection to determine whether it can cause giant orogenic gold deposits and their regular spatial distribution along major fault/shear zones. The approach comprises: (i) coupled two- and three-dimensional numerical heat- and fluid-flow simulations of simplified geological models; and (ii) calculation of the rock alteration index (RAI) to delineate regions where precipitation/dissolution can occur. Then, comparing the deduced alteration patterns with temperature distribution, potential areas of gold mineralization, defined by T > 200 degrees C and RAI < 0, are predicted. The models are based on the orogenic Paleoproterozoic ore deposits of the Ashanti belt in western Africa. These deposits occur in the most permeable parts of the fault zone, where the lateral permeability contrast is the highest. For a simple geometry, with a fault zone adjacent to a sedimentary basin half as permeable, we note a transition from three-dimensional circulation within the fault to a two-dimensional convective pattern in the basin far from the fault. Moreover, whereas two-dimensional undulated isotherms dominate in the basin, three-dimensional corrugated isotherms result from the preferred convective pattern within the fault, thus enhancing a periodic distribution of thermal highs and lows. In our most elaborate three-dimensional model with an imposed lateral permeability gradient, the RAI distribution indicates that fluid circulation in fault zones gives rise to a spatial periodicity of alteration patterns consistent with field data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available