4.7 Article

Impact of drainage on soil-forming mechanisms in a French Albeluvisol: Input of mineralogical data in mass-balance modelling

Journal

GEODERMA
Volume 145, Issue 3-4, Pages 426-438

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.geoderma.2008.02.005

Keywords

pedogenesis modelling; agricultural practices; artificial drainage; eluviation; redox processes; Albeluvisol

Categories

Ask authors/readers for more resources

Research on soil pedogenesis has mainly focused on the long-term soil formation and has most often neglected recent soil evolutions in response to human practices. Such recent soil evolutions are however of considerable interest to study the timing of soil forming processes in response to changes in environmental conditions. In this paper, we model the Albeluvisol evolution in response to agricultural drainage. This was considered as a model case to study the velocity of mineralogical changes in soil as a result of eluviation and redox processes. We used a space-for-time substitution approach in combination with mass balance modelling based on mineralogical data in order to identify and characterise the mineralogical transformations responsible for the recent soil evolution in response to subsurface drainage. This approach allowed demonstrating that the main effects of subsurface drainage are (i) increasing precipitation of Mn oxides and Mn-rich ferrihydrite with decreasing distance to the drain as a result of the change in redox conditions and (ii) increasing loss of clay-sized oxides and smectites due to the enhanced eluviation in the vicinity of the drain. Both processes induce significant matter fluxes in comparison with those that occurred over the long-term soil formation. Nowadays, the precipitation of Mn oxides and Mn-rich ferrihydrite seems to still be active in the studied soil. On the opposite, the eluviation process appears less active than immediately after the drainage network installation, if not totally inactive. It thus demonstrates that some soil processes may have significant impact on the soil mineralogical composition even if they are only active over very short periods of time after a change in environmental conditions. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available