4.7 Article

Apatite: A new redox proxy for silicic magmas?

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 132, Issue -, Pages 101-119

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.01.040

Keywords

-

Funding

  1. NERC
  2. British Geological Survey
  3. NERC [bgs05010, IMF010001] Funding Source: UKRI
  4. Natural Environment Research Council [bgs05010, IMF010001] Funding Source: researchfish

Ask authors/readers for more resources

The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this paper we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+ and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO(2)) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively (Stephens et al., 1985). This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO(2), such that logfO(2) = -0.0022(perpendicular to 0.0003)Mn(ppm) -9.75(perpendicular to 0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available