4.7 Article

Garnets within geode-like serpentinite veins: Implications for element transport, hydrogen production and life-supporting environment formation

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 141, Issue -, Pages 454-471

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.07.002

Keywords

-

Funding

  1. European Commission through the EU [PITN-GA-2008-215360]
  2. NWO

Ask authors/readers for more resources

Geochemical micro-environments within serpentinizing systems can abiotically synthesize hydrocarbons and provide the ingredients required to support life. Observations of organic matter in microgeode-like hydrogarnets found in Mid-Atlantic Ridge serpentinites suggest these garnets possibly represent unique nests for the colonization of microbial ecosystems within the oceanic lithosphere. However, little is known about the mineralogical and geochemical processes that allow such unique environments to form. Here we present work on outcrop-scale vein networks from an ultramafic massif in Norway that contain massive amounts of spherulitic garnets (andradite), which help to constrain such processes. Vein andradite spherulites are associated with polyhedral serpentine, brucite, Ni-Fe alloy (awaruite), and magnetite indicative of low temperature (<200 degrees C) alteration under low fO(2) and low aSiO(2), aq geochemical conditions. Together with the outcrop- and micro-scale analysis geochemical reaction path modeling shows that there was limited mass transport and fluid flow over a large scale. Once opened the veins remained isolated (closed system), forming non-equilibrium microenvironments that allowed, upon a threshold supersaturation, the rapid crystallization (seconds to weeks) of spherulitic andradite. The presence of polyhedral serpentine spheres indicates that veins were initially filled with a gel-like protoserpentine phase. In addition, massive Fe oxidation associated with andradite formation could have generated as much as 600 mmol H-2, aq per 100 cm(3) vein. Although no carboneous matter was detected, the vein networks fulfill the reported geochemical criteria required to generate abiogenic hydrocarbons and support microbial communities. Thus, systems similar to those investigated here are of prime interest when searching for life-supporting environments within the deep subsurface. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available