4.7 Article

Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 102, Issue -, Pages 45-64

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2012.10.027

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP0878903]
  2. Minerals Down Under Flagship
  3. University of Adelaide
  4. CSIRO Minerals Down Under Flagship
  5. NERC [NE/I02349X/1] Funding Source: UKRI
  6. Natural Environment Research Council [NE/I02349X/1] Funding Source: researchfish

Ask authors/readers for more resources

Chloride and bisulfide are the primary ligands believed to control the transport of copper in hydrothermal fluids. Ab initio molecular dynamics (MD) simulations based on density functional theory were conducted to predict the stoichiometries and geometries of Cu(I) complexes in mixed chloride and hydrosulfide (HS- and H2S(aq)) fluids at ambient temperature and at 327 degrees C and 500 bar, and to assess the relative importance of the chloride and hydrosulfide ligands for Cu transport. The simulations accurately reproduce the identity and geometries of Cu(I) chloride and bisulfide species derived from experimental solubility, UV-Vis, and in situ XAS results. The simulations indicate the following ligand preference: HS- > Cl- > H2S for Cu(I) complexes, but predict a high stability of the mixed-ligand complex, CuCl(HS)(-), a species similar to NaClCuHS species in vapour phase suggested by Zajacz et al. (2011). The thermodynamic properties (formation constants, logKs) of Cu(I) chloride and bisulfide complexes were investigated by distance-constrained MD simulations using thermodynamic integration. The predicted logKs of the following reactions are in good agreement (within 1 log unit) with the experimental values (Brugger et al., 2007; Liu et al., 2001): Cu+ + Cl- = CuCl(aq); log K-327 degrees C,K-calc = +3.87 +/- 0.14; log K-325 degrees C,K-exp = +4.12; CuCl(aq) + Cl- = CuCl2-; log K-327 degrees C,K-calc = +2.84 +/- 0.09; log K-325 degrees C,K-exp = +1.98; CuCl2- + Cl- = CuCl32-; log K-327 degrees C,K-calc = -1.23 +/- 0.21; log K-325 degrees C,K-exp = -2.17. The fair agreements between the predicted logKs with those derived from experimental data demonstrate the potential of predicting thermodynamic properties for transition metal complexes under hydrothermal conditions by MD simulations. The formation constant for the mixed-ligand complex CuCl(HS)(-) is calculated for the first time: Cu+ + Cl- + HS- = CuCl(HS)(-); log K-327 degrees C,K-calc = +11.47. Determination of the formation constants for Cu(I) complexes enabled the construction of activity-activity diagrams entirely based on the MD simulation data. The results suggest that the mixed-ligand complex plays an important role in Cu transport in hydrothermal fluids. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available