4.7 Article

Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 107, Issue -, Pages 155-169

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2013.01.005

Keywords

-

Funding

  1. Netherlands Organization for Scientific Research (NWO Vidi)
  2. EU-BONUS project HYPER
  3. European Research Council under the European Community [278364]

Ask authors/readers for more resources

Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area, elevating the total P burial rate above that expected for a euxinic depositional environment. Particle shuttles of Fe and Mn oxides into the deep euxinic basins act as drivers for P-bearing mineral authigenesis. While Fe(II) phosphates are formed continuously in the upper sediments following the sulfidization of Fe-oxyhydroxides and release of associated P, Mn-Ca-carbonate-phosphates are formed intermittently following inflow events of oxygenated North Sea water into the deep basins. The mechanism of Fe(II) phosphate formation differs from previously reported occurrences of vivianite formation in marine sediments, by occurring within, rather than below, the sulfate-methane transition zone. The spatial distribution of both authigenic phases in Baltic sediments varies in accordance with the periodic expansion of anoxia on centennial to millennial timescales. The results highlight the potential importance of authigenic P-bearing minerals other than carbonate fluorapatite for total P burial in euxinic basins. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available