4.7 Article

Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 94, Issue -, Pages 128-145

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2012.07.007

Keywords

-

Funding

  1. Inland Northwest Research Alliance (INRA), NSF [CHE-0431425]
  2. University of Alaska Fairbanks College of Natural Science and Mathematics (UAF CNSM)
  3. International Association of GeoChemistry (IAGC)
  4. Clay Minerals Society (CMS)
  5. SERDP [ER-1770]

Ask authors/readers for more resources

Oxidation state is a major factor affecting the mobility of arsenic (As) and antimony (Sb) in soil and aquatic systems. Metal (hydr) oxides and clay minerals are effective sorbents, and may also promote redox reactions on their surfaces via direct or indirect facilitation of electron transfer. Iron substituted for Al in the octahedral sites of aluminosilicate clay minerals has the potential to be in variable oxidation states and is a key constituent of electron transfer reactions in clay minerals. This experimental work was conducted to determine whether structural Fe in clays can affect the oxidation state of As and Sb adsorbed at the clay surface. Another goal of our study was to compare the reactivity of clay structural Fe(II) with systems containing Fe(II) present in dissolved/adsorbed forms. The experimental systems included batch reactors with various concentrations of As(III), Sb(III), As(V), or Sb(V) equilibrated with oxidized (NAu-1) or partially reduced (NAu-1-Red) nontronite, hydrous aluminum oxide (HAO) and kaolinite (KGa-1b) suspensions under oxic and anoxic conditions. The reaction times ranged from 0.5 to 720 h, and pH was constrained at 5.5 (for As) and at 5.5 or 8.0 (for Sb). The oxidation state of As and Sb in the liquid phase was determined by liquid chromatography in line with an inductively coupled plasma mass spectrometer, and in the solid phase by X-ray absorption spectroscopy. Our findings show that structural Fe(II) in NAu-1-Red was not able to reduce As(V)/Sb(V) under the conditions examined, but reduction was seen when aqueous Fe(II) was present in the systems with kaolinite (KGa-1b) and nontronite (NAu-1). The ability of the structural Fe in nontronite clay NAu-1 to promote oxidation of As(III)/Sb(III) was greatly affected by its oxidation state: if all structural Fe was in the oxidized Fe(III) form, no oxidation was observed; however, when the clay was partially reduced (similar to 20% of structural Fe was reduced to Fe(II)), NAu-1-Red promoted the most extensive oxidation under both oxic and anoxic conditions. Electron balance considerations suggest that structural Fe(III) in the NAu-1-Red was the sole oxidant in the anoxic setup, while dissolved O-2 also contributes in oxic conditions. Long-term batch experiments revealed the complex dynamics of As aqueous speciation in anoxic and oxic systems when reduced arsenic was initially added: rapid disappearance of As(III) was observed due to oxidation to As(V) followed by a slow increase of aqueous As(III). This behavior is explained by two reactions: fast initial oxidation of As(III) by structural Fe(III) (anoxic) or Fe(III) and dissolved O-2 (oxic) followed by the slow reduction of As(V) by dissolved Fe(II). The resulting re-mobilization of As due to As(V) reduction by aqueous Fe(II) occurs on time scales on the order of days. These reactions are likely significant in a natural soil or aquifer environment with seasonal cycling or slightly reducing conditions with an abundance of clay minerals and dissolved Fe(II). (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available