4.7 Article

Assessment of the geochemical reactivity of Fe-DOM complexes in wetland sediment pore waters using a nitroaromatic probe compound

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 73, Issue 5, Pages 1382-1393

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2008.12.001

Keywords

-

Funding

  1. NSF [EAR 0337434]
  2. Ohio Sea Grant [NA16RG2252]
  3. US. EPA STAR Graduate Fellowship [91635401]

Ask authors/readers for more resources

The reductive capacity of Fe(II) present in anoxic sediment pore waters affects biogeochemically significant processes that occur in these environments, such as metal speciation, mineral solubility, nutrient bioavailability, and the transformation of anthropogenic organic compounds. We studied the reduction of pentachloronitrobenzene (PCNB) in natural pore waters to elucidate the reductive capacity of Fe(II) complexes, and monitored the redox-active species responsible for the observed kinetics. Differential pulse polarography (DPP) scans of sediment pore waters from a coastal Lake Erie wetland (Old Woman Creek National Estuarine Research Reserve, Huron, OH) revealed an increase in both Fe(III)-organic and Fe(II) species to a depth of similar to 30 cm, below the sediment-water interface. Concentrations of dissolved organic matter (DOM) in pore waters increased while pH decreased with depth. We found that Fe(II) was necessary for rapid PCNB reduction (<24 h), and observed faster reduction with increased pH. PCNB reduction in preserved pore waters (acidified to pH 2.5 after pore water extraction and raised to the native pH (6.7-7.6) prior to reaction) was similar to that observed in a model system containing Fe(II) and fulvic acid isolated from this site. Conversely, PCNB reduction in unaltered pore water was significantly slower than that observed in preserved pore water, indicating that the Fe(II) speciation and its reductive capacity differed. DPP scans of pore waters used for kinetic studies confirmed that pH-adjustment affected Fe-T speciation in the pore waters, as the Fe(III)DOM peak current was lowered or disappeared completely in the preserved pore water samples. These data show that pH-adjustment of pore waters presumably alters both their complexation chemistry and reactivity towards PCNB, and shows how small changes in Fe complexation can potentially affect redox chemistry in anoxic environments. Our results also show that reactive organic Fe(II) complexes are naturally present in wetland sediment pore waters, and that these species are potentially important mediators of Fe(II)/Fe(III) redox biogeochemistry in anoxic sedimentary environments. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available