4.5 Article

The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 13, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GC003859

Keywords

Cocos plate; flat subduction; slab buoyancy; slab dip; subduction dynamics; thermomechanical numerical modeling

Funding

  1. Spanish Plan Nacional del MCINN [CGL2009-13103]
  2. Spanish Ministry of Education
  3. UC-Davis
  4. NSF [6877321, 0748818]
  5. Directorate For Geosciences [748818] Funding Source: National Science Foundation
  6. Division Of Earth Sciences [748818] Funding Source: National Science Foundation

Ask authors/readers for more resources

Slab dip varies significantly, both between different, and along single subduction zones. Provided that old subducting plates are colder and denser than young plates, variations in the slab dip should correlate with slab age. However, recent statistical analyses do not show this expected correlation. We present the results of non-Newtonian numerical dynamic models where subduction is driven by means of a kinematic boundary condition. We systematically vary the age of both the overriding and subducting plates in order to test these effects on the slab dip at different depth ranges. We find that colder overriding plates result in shallower slab dips and episodes of flat slab subduction, as a result of the increased suction force in the mantle wedge. The influence of the thermal state of the overriding plate on slab dip is shown here to be more important than that of the age of subducting lithosphere. Modeling results are qualitatively compared to the large dip variability of the Cocos slab including a flat-slab segment. We suggest that this variability is likely related to the change of the thermal state of the overriding plates, with flat subduction occurring under cold lithosphere in southwestern Mexico and steep subduction under the warmer lithosphere of the northwestern Caribbean plate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available