4.5 Article

Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 13, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012GC004146

Keywords

IRM end-member modeling; NW Africa; environmental magnetism; magnetotactic bacteria; paleoclimate; terrigenous input

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) through the international graduate college EUROPROX- Proxies in Earth History
  2. Deutsche Forschungsgemeinschaft (DFG) through DFG-Research Center / Cluster of Excellence The Ocean in the Earth System MARUM-Center for Marine Environmental Sciences

Ask authors/readers for more resources

Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply end-member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe2+/Fe3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes at the continental margin of NW Africa emphasizing that meltwater discharge in the North Atlantic had an enormous impact on atmospheric dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available