4.5 Article

Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 12, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GC003240

Keywords

Cayman; ultraslow; oceanic core complex; detachment; gabbro; hydrothermal

Funding

  1. Woods Hole Oceanographic Institution
  2. University of Florida
  3. UTIG innovation
  4. Caribbean Basins Tectonics and Hydrocarbon project
  5. Division Of Ocean Sciences
  6. Directorate For Geosciences [0961775] Funding Source: National Science Foundation

Ask authors/readers for more resources

Roughly a third of the global mid-ocean ridge system spreads at < 20 mm/yr (full rate) with predicted low crustal thicknesses, great axial depths, end-member basalt compositions, and prominent axial faults. These predictions are here further investigated along the ultraslow (15-17 mm/yr) Mid-Cayman Spreading Center (MCSC) through a compilation of both previously published and unpublished data. The MCSC sits along the Caribbean-North American plate boundary and is one of the world's deepest (> 6 km) spreading centers, and thought to accrete some of the thinnest (similar to 3 km) crust. The MCSC generates end-member mid-ocean ridge basalt compositions and hosts recently discovered hydrothermal vents. Multibeam bathymetric data reveal that axial depth varies along the MCSC with intraridge rift walls defined by kilometer-scale escarpments and massifs. Dredging and near-bottom work has imaged and sampled predominantly basaltic lavas from the greatest axial depths and similar to 15% peridotite surrounded by gabbroic rocks from the prominent massifs. The gabbroic rocks exhibit wide compositional variation (troctolites to ferrogabbros) and in many places contain high-temperature (amphibolite to granulite facies) shear zones. Gabbroic compositions primarily reflect the accumulation of near-liquidus phases that crystallized from a range of basaltic melts, as well as from interactions with interstitial melts in a subaxial mush zone. Magnetization variations inverted from aeromagnetic data are consistent with a discontinuous distribution of basaltic lavas and structurally asymmetric spreading. These observations support an oceanic core complex model for MCSC seafloor spreading, potentially making it a type example of ultraslow seafloor spreading through mush zone and detachment fault crustal processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available