4.4 Article

Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1

Journal

GEOBIOLOGY
Volume 12, Issue 1, Pages 48-61

Publisher

WILEY
DOI: 10.1111/gbi.12067

Keywords

-

Funding

  1. Swiss National Science Foundation [315230_127546/1, 315230_146568]
  2. Swiss National Science Foundation (SNF) [315230_146568, 315230_127546] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Desulfotomaculum reducens MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing several metals, among which is Fe(III). Very limited knowledge is available on the potential mechanism(s) of metal reduction among Gram-positive bacteria, despite their preponderance in the microbial communities that inhabit some inhospitable environments (e.g., thermal or hyperthermal ecosystems, extreme pH or salinity environments, heavy metal or radionuclide contaminated sediments). Here, we show that in the presence of pyruvate, this micro-organism is capable of reducing both soluble Fe(III)-citrate and solid-phase hydrous ferric oxide, although growth is sustained by pyruvate fermentation rather than Fe(III) respiration. Despite the fact that Fe(III) reduction does not support direct energy conservation, D.reducens uses it as a complementary means of discarding excess reducing equivalent after H-2 accumulation in the culture headspace renders proton reduction unfavorable. Thus, Fe(III) reduction permits the oxidation of greater amounts of pyruvate than fermentation alone. Fe(III) reduction by D.reducens is mediated by a soluble electron carrier, most likely riboflavin. Additionally, an intracellular electron storage molecule acts as a capacitor and accumulates electrons during pyruvate oxidation for slow release to Fe(III). The reductase responsible for the transfer of electrons from the capacitor to the soluble carrier has not been identified, but data presented here argue against the involvement of c-type cytochromes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available