4.4 Article

Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas

Journal

GEOBIOLOGY
Volume 8, Issue 4, Pages 337-354

Publisher

WILEY
DOI: 10.1111/j.1472-4669.2010.00245.x

Keywords

-

Funding

  1. National Aeronautics and Space Administration Astrobiology
  2. University of Central Florida's Florida Space Grant Consortium
  3. Paleontological Society
  4. University of Connecticut Center for Environmental Science and Engineering Multidisciplinary Environmental Research Award
  5. Geological Society of America

Ask authors/readers for more resources

Thrombolites are unlaminated carbonate build-ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1-2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as 'button mats', produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite-specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available