4.7 Article

The limitations of draft assemblies for understanding prokaryotic adaptation and evolution

Journal

GENOMICS
Volume 100, Issue 3, Pages 167-175

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2012.06.009

Keywords

Transposable elements; Next-generation sequencing; Cupriavidus metallidurans CH34; Genomic islands; De novo assembly

Funding

  1. NSERC

Ask authors/readers for more resources

The de novo assembly of next generation sequencing data is a daunting task made more difficult by the presence of genomic repeats or transposable elements, resulting in an increasing number of genomes designated as completed draft assemblies. We created and assembled idealized sequence data sets for Cupriavidus metallidurans CH34, Caulobacter sp. K31, Gramella forsetii KT0803, Rhodobacter sphaeroides 2.4.1 and Bordetella bronchiseptica RB50. In addition to confirming the role of transposable elements in interrupting the assemblies, an association was found between the most fragmented regions and known or predicted genomic islands in these strains. Assembly quality was more strongly related to putative genomic island content than to any other factor examined. We believe this association indicates that draft assemblies are limiting our ability to understand the genomic context of important bacterial adaptations and that the increased effort required for finishing genomes can provide a wealth of information for future studies. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available