4.7 Article

Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders

Journal

GENOME RESEARCH
Volume 18, Issue 3, Pages 380-392

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.6880908

Keywords

-

Funding

  1. NCI NIH HHS [N01CO12400] Funding Source: Medline
  2. NHGRI NIH HHS [U01 HG003147] Funding Source: Medline
  3. PHS HHS [N01-C0-12400] Funding Source: Medline

Ask authors/readers for more resources

Transcription factors and histone modifications are crucial regulators of gene expression that mutually influence each other. We present the DNA binding profiles of upstream stimulatory factors I and 2 (uSF1, USF2) and acetylated histone H3 (H3ac) in a liver cell line for the whole human genome using ChIP-chip at a resolution of 35 base pairs. We determined that these three proteins bind mostly in proximity of protein coding genes transcription start sites (TSSs), and their bindings are positively correlated with gene expression levels. Based on the spatial and functional relationship between USFs and H3ac at protein coding gene promoters, we found similar promoter architecture for known genes and the novel and less-characterized transcripts human mRNAs and spliced ESTs. Furthermore, our analysis revealed a previously underestimated abundance of genes in a bidirectional conformation, where USFs are bound in between TSSs. After taking into account this promoter conformation, the results indicate that H3ac is mainly located downstream of TSS, and it is at this genomic location where it positively correlates with gene expression. Finally, USF1, which is associated to familial combined hyperlipidemia, was found to bind and potentially regulate nuclear mitochondrial genes as well as genes for lipid and cholesterol metabolism, frequently in collaboration with GA binding protein transcription factor alpha (GABPA, nuclear respiratory factor 2 [NRF-2]). This expands our understanding about the transcriptional control of metabolic processes and its alteration in metabolic disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available