4.5 Article

Reevaluating the Green Contribution to Diatom Genomes

Journal

GENOME BIOLOGY AND EVOLUTION
Volume 4, Issue 7, Pages 795-800

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evs053

Keywords

diatoms; phylogenomics; plastid; endosymbiotic gene transfers

Funding

  1. French CNRS
  2. Universite Paris-Sud

Ask authors/readers for more resources

Photosynthetic diatom plastids have long been suggested to have originated by the secondary endosymbiosis of a red alga. However, recent phylogenomic studies report a high number of diatom nuclear genes phylogenetically related to green algal and green plant genes. These were interpreted as endosymbiotic gene transfers (EGT) from a cryptic green algal endosymbiosis. We reanalyzed this issue using a larger set of red algal genomic data. We show that previous studies suffer from a taxonomic sampling bias and point out that a majority of gene phylogenies are either poorly resolved or do not describe EGT events. We finally show that genes having a complete descent from cyanobacteria to diatoms through primary and secondary EGTs have been mostly transferred via a red alga. We conclude that, even if some diatom genes still support a putative green algal origin, these are not sufficient to argue for a cryptic green algal secondary endosymbiosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available