4.5 Article

Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis

Journal

GENOME BIOLOGY AND EVOLUTION
Volume 1, Issue -, Pages 409-414

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evp043

Keywords

duplicate; Arabidopsis thaliana; phenotypic effect; functional compensation; selection pressure and genetic robustness

Funding

  1. RIKEN Plant Science Center
  2. National Institutes of Health [GM30998]

Ask authors/readers for more resources

Knocking out a gene from a genome often causes no phenotypic effect. This phenomenon has been explained in part by the existence of duplicate genes. However, it was found that in mouse knockout data duplicate genes are as essential as singleton genes. Here, we study whether it is also true for the knockout data in Arabidopsis. From the knockout data in Arabidopsis thaliana obtained in our study and in the literature, we find that duplicate genes show a significantly lower proportion of knockout effects than singleton genes. Because the persistence of duplicate genes in evolution tends to be dependent on their phenotypic effect, we compared the ages of duplicate genes whose knockout mutants showed less severe phenotypic effects with those with more severe effects. Interestingly, the latter group of genes tends to be more anciently duplicated than the former group of genes. Moreover, using multiple-gene knockout data, we find that functional compensation by duplicate genes for a more severe phenotypic effect tends to be preserved by natural selection for a longer time than that for a less severe effect. Taken together, we conclude that duplicate genes contribute to genetic robustness mainly by preserving compensation for severe phenotypic effects in A. thaliana.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available