4.4 Article

Fitness distribution and transgressive segregation across 40 environments in a hybrid progeny population of the human-pathogenic yeast Cryptococcus neoformans

Journal

GENOME
Volume 51, Issue 4, Pages 272-281

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/G08-004

Keywords

drug resistance; hybridization; transgressive segregation; genotype-environment interaction

Ask authors/readers for more resources

The opportunistic human fungal pathogen Cryptococcus neoformans includes two varieties, C. neoformans var. grubii and C. neoformans var. neoformans, which correspond to serotypes A and D, respectively. Recent population genetic studies revealed that multiple natural hybridizations have occurred recently between these two divergent lineages. However, the biological effects of such hybridizations are little understood. In this study, we used colony size as a proxy for vegetative fitness to examine the phenotypic effects of hybridization between these two lineages in a laboratory cross. Two genetically diverged parental strains that differed in their growth at different temperatures and on different media as well as in their susceptibility to the common antifungal drug fluconazole were chosen. A total of 269 progeny were obtained and their vegetative growth was determined in 40 environments that differed in nutrients, temperature, and fluconazole concentration. Our analyses indicated little evidence for outbreeding depression or heterosis in the average vegetative fitness of the hybrid progeny population. The progeny, each of the three environmental variables, and their two-way, three-way, and four-way interactions all contributed significantly to the overall vegetative fitness variation. Interestingly, a variable number of progeny displayed evidence of transgressive segregation in vegetative fitness among the tested environments. Our study suggests that hybridization could play a significant role in the phenotypic evolution of this important human-pathogenic fungus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available