4.4 Article

Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection

Journal

JOURNAL OF VIROLOGICAL METHODS
Volume 223, Issue -, Pages 45-49

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jviromet.2015.07.011

Keywords

Avian influenza; Subtype H5N1; Recombinase polymerase amplification assay; Real-time RT-PCR

Funding

  1. National Laboratory for Quality Control on Poultry Production

Ask authors/readers for more resources

The 2006 outbreaks of H5N1 avian influenza in Egypt interrupted poultry production and caused staggering economic damage. In addition, H5N1 avian influenza viruses represent a significant threat to public health. Therefore, the rapid detection of H5 viruses is very important in order to control the disease. In this study, a qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of hemagglutinin gene of H5 subtype influenza viruses was developed. The results were compared to the real-time reverse transcription polymerase chain reaction (RT-PCR). An in vitro transcribed RNA standard of 970 nucleotides of the hemagglutinin gene was developed and used to determine the assay sensitivity. The developed H5 RT-RPA assay was able to detect one RNA molecule within 7 min, while in real-time RT-PCR, at least 90 min was required. H5 RT-RPA assay did not detect nucleic acid extracted from H5 negative samples or from other pathogens producing respiratory manifestation in poultry. The clinical performance of the H5 RT-RPA assay was tested in 30 samples collected between 2014 and 2015; the sensitivity of H5 RT-RPA and real-time RT-PCR was 100%. In conclusion, H5 RT-RPA was faster than real-time RT-PCR and easily operable in a portable device. Moreover, it had an equivalent sensitivity and specificity. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available