4.4 Article

Estimating Selection Coefficients in Spatially Structured Populations from Time Series Data of Allele Frequencies

Journal

GENETICS
Volume 193, Issue 3, Pages 973-+

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.112.147611

Keywords

-

Funding

  1. Wellcome Trust [089250/Z/09/Z, 090532/Z/09/Z]
  2. Wellcome Trust [089250/Z/09/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Inferring the nature and magnitude of selection is an important problem in many biological contexts. Typically when estimating a selection coefficient for an allele, it is assumed that samples are drawn from a panmictic population and that selection acts uniformly across the population. However, these assumptions are rarely satisfied. Natural populations are almost always structured, and selective pressures are likely to act differentially. Inference about selection ought therefore to take account of structure. We do this by considering evolution in a simple lattice model of spatial population structure. We develop a hidden Markov model based maximum-likelihood approach for estimating the selection coefficient in a single population from time series data of allele frequencies. We then develop an approximate extension of this to the structured case to provide a joint estimate of migration rate and spatially varying selection coefficients. We illustrate our method using classical data sets of moth pigmentation morph frequencies, but it has wide applications in settings ranging from ecology to human evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available