4.4 Article

The Limits to Parapatric Speciation: Dobzhansky-Muller Incompatibilities in a Continent-Island Model

Journal

GENETICS
Volume 191, Issue 3, Pages 845-U345

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.111.137513

Keywords

-

Funding

  1. Vienna Science and Technology Fund [MA06-01]
  2. Austrian Science Fund [P21305-N13]
  3. Austrian Science Fund (FWF) [P21305] Funding Source: Austrian Science Fund (FWF)
  4. Austrian Science Fund (FWF) [P 21305] Funding Source: researchfish

Ask authors/readers for more resources

How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky-Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration-selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available