4.4 Article

Evaluating the Evidence for Transmission Distortion in Human Pedigrees

Journal

GENETICS
Volume 191, Issue 1, Pages 215-+

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.112.139576

Keywords

-

Funding

  1. National Heart, Lung, and Blood Institute (NHLBI)
  2. Boston University
  3. National Institute of Mental Health [1U24MH081810]
  4. National Institutes of Health (NIH) [T32 GM007197, R01 HD21244, R01 HL085197, GM72861, GM83098]
  5. Austrian Science Fond (FWF) [P23811000]
  6. Austrian Science Fund (FWF) [P 23811] Funding Source: researchfish

Ask authors/readers for more resources

Children of a heterozygous parent are expected to carry either allele with equal probability. Exceptions can occur, however, due to meiotic drive, competition among gametes, or viability selection, which we collectively term transmission distortion (TD). Although there are several well-characterized examples of these phenomena, their existence in humans remains unknown. We therefore performed a genome-wide scan for TD by applying the transmission disequilibrium test (TDT) genome-wide to three large sets of human pedigrees of European descent: the Framingham Heart Study (FHS), a founder population of European origin (HUTT), and a subset of the Autism Genetic Resource Exchange (AGRE). Genotyping error is an important confounder in this type of analysis. In FHS and HUTT, despite extensive quality control, we did not find sufficient evidence to exclude genotyping error in the strongest signals. In AGRE, however, many signals extended across multiple SNPs, a pattern highly unlikely to arise from genotyping error. We identified several candidate regions in this data set, notably a locus in 10q26.13 displaying a genome-wide significant TDT in combined female and male transmissions and a signature of recent positive selection, as well as a paternal TD signal in 6p21.1, the same region in which a significant TD signal was previously observed in 30 European males. Neither region replicated in FHS, however, and the paternal signal was not visible in sperm competition assays or as allelic imbalance in sperm. In maternal transmissions, we detected no strong signals near centromeres or telomeres, the regions predicted to be most susceptible to female-specific meiotic drive, but we found a significant enrichment of top signals among genes involved in cell junctions. These results illustrate both the potential benefits and the challenges of using the TDT to study transmission distortion and provide candidates for investigation in future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available