4.4 Article

Quantitative Trait Locus Analysis of Stage-Specific Inbreeding Depression in the Pacific Oyster Crassostrea gigas

Journal

GENETICS
Volume 189, Issue 4, Pages 1473-+

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.111.131854

Keywords

-

Funding

  1. National Science Foundation [0412696]
  2. Directorate For Geosciences
  3. Division Of Ocean Sciences [0412696] Funding Source: National Science Foundation

Ask authors/readers for more resources

Inbreeding depression and genetic load have been widely observed, but their genetic basis and effects on fitness during the life cycle remain poorly understood, especially for marine animals with high fecundity and high, early mortality (type-III survivorship). A high load of recessive mutations was previously inferred for the Pacific oyster Crassostrea gigas, from massive distortions of zygotic, marker segregation ratios in F2 families. However, the number, genomic location, and stage-specific onset of mutations affecting viability have not been thoroughly investigated. Here, we again report massive distortions of microsatellite-marker segregation ratios in two F2 hybrid families, but we now locate the causative deleterious mutations, using a quantitative trait locus (QTL) interval-mapping model, and we characterize their mode of gene action. We find 14-15 viability QTL (vQTL) in the two families. Genotypic frequencies at vQTL generally suggest selection against recessive or partially recessive alleles, supporting the dominance theory of inbreeding depression. No epistasis was detected among vQTL, so unlinked vQTL presumably have independent effects on survival. For the first time, we track segregation ratios of vQTL-linked markers through the life cycle, to determine their stage-specific expression. Almost all vQTL are absent in the earliest life stages examined, confirming zygotic viability selection; vQTL are predominantly expressed before the juvenile stage (90%), mostly at metamorphosis (50%). We estimate that, altogether, selection on vQTL caused 96% mortality in these families, accounting for nearly all of the actual mortality. Thus, genetic load causes substantial mortality in inbred Pacific oysters, particularly during metamorphosis, a critical developmental transition warranting further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available